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Abstract

In this paper we introduce a direct motivation for solving the minimum
2-sum problem, for which we present a linear-time algorithm inspired
by the Algebraic Multigrid approach which is based on weighted edge
contraction. Our results turned out to be better than previous results,
while the short running time of the algorithm enabled experiments with
very large graphs. We thus introduce a new benchmark for the minimum
2-sum problem which contains 66 graphs of various characteristics. In
addition, we propose the straightforward use of a part of our algorithm
as a powerful local reordering method for any other (than multilevel)
framework.
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1 Introduction

The minimum 2-sum problem (M2sP) belongs to a large family of graph layout
problems such as : Bandwidth, Cutwidth, Vertex Separation, Profile of a Graph,
Sum Cut, etc. The M2sP appears in several applications for solving problems
in the large sparse matrix computation, such as finding the minimum linear
arrangement [26, 19] or the bandwidth [27]. The M2sP is also closely related
to the problem of calculating the envelope size of a symmetric matrix or more
precisely, to the amount of work needed in the Cholesky factorization of such
a matrix [14]. In addition, the M2sP may be motivated as a model used in
VLSI design, where at the placement phase it is chosen to minimize the total
squared wire length [10]. Commonly for general graphs (or matrices) these
problems are NP-hard and their decision versions are NP-complete [13]. The
NP-completeness of the M2sP is proved in [14].

The M2sP becomes a simple quadratic optimization problem with a known
solution, due to Hall [15], if the restriction on the solution coordinates is relaxed,
i.e., the coordinates need not be all integers, as in the case where all vertices
are considered to have equal unity volume (see Section 2). Hall has shown in
[15] that the eigenvector v2 which corresponds to the second smallest eigenvalue
of the Laplacian of the graph (provided the graph is connected), is the best
nontrivial solution to this unrestricted form of the M2sP (subject to some nor-
malization of the solution). Arrangement of the graph vertices according to v2

is a well known, quite successful heuristic, usually called the spectral approach,
used for many ordering problems like the minimum linear arrangement [19],
partitioning [16, 23, 22, 29], envelope reduction of sparse matrices [1], etc.

George and Pothen [14] have studied the M2sP as they used it for establishing
results for the envelope reduction of matrices. They tried to evaluate the quality
of the approximation for the M2sP by the spectral approach in a quantitative
manner. While for some finite element graphs they indeed got close results,
for general graphs the gap was profound. They suggested that this gap can
be reduced by applying some local reordering (postprocessing) to the obtained
results of the spectral approach.

The fact that the solution for the M2sP with real variables is extensively
used as a first approximation to other graph layout problems, brings up the
idea that a good solution to the discrete M2sP can serve as well, if not better.
The first question, of course, is how well the spectral approach solves the M2sP
itself, that is, how well the solution with real variables approximates the discrete
setting. This question is extensively tested in our paper. In addition, since
the M2sP already penalizes long distances sufficiently strongly to practically
prohibit very non-uniform distribution of distances, which is typical to many
other layout problems, and since its formulation is nothing but a quadratic
functional, it may be considered the simplest yet central among other layout
problems. As such, M2sP can and should be used (in various ways, e.g., serve
as a first approximation [27]) to help solving other problems. This requires, of
course, having an efficient algorithm at hand, which is exactly the purpose of
our research.
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In this paper we present a new multilevel algorithm for the minimum 2-
sum problem based on the Algebraic MultiGrid scheme (AMG) [5, 6, 2, 9,
25, 30, 31]. The main objective of a multilevel based algorithm is to create a
hierarchy of problems, each representing the original problem, but with fewer
degrees of freedom. General multilevel techniques have been successfully applied
to various areas of science (e.g. physics, chemistry, engineering, etc.) [4, 7].
AMG methods were originally developed for solving linear systems of equations
resulting from the discretization of partial differential equations. Lately they
have been applied to various other fields, yielding for example novel methods
for image segmentation [28] and for the linear arrangement problem [26]. In
the context of graphs it is the Laplacian matrix that represents the related set
of equations. The main difference between our approach to other multilevel
approaches (related to various graph optimization problems, e.g., [17]) is the
coarsening scheme. While the previous approaches may be viewed as strict
aggregation process (in which the nodes are simply blocked together into small
groups and the edges are defined by the straightforward sum of the existing edges
between these groups), the AMG coarsening is actually a weighted aggregation:
each node may be divided into fractions, and different fractions belong to
different aggregates. This enables more freedom in solving the coarser levels
and avoids making hardened local decisions (such as the edge contractions made
when strict aggregation is employed) before accumulating the relevant global
information. The aggregation process we use here is similar to the one used
for solving the minimum linear arrangement problem [26]. This part of the
algorithm may, in principle, be general to many other graph layout problems
(e.g., [11]), as it mainly creates the hierarchy of graphs. The diverse algorithmic
ingredients, however, emerge during the disaggregation.

In the disaggregation step, the final arrangement obtained on a coarser level
is projected to a finer level. This initial fine level arrangement is being fur-
ther improved by applying various local reordering methods. In this article we
introduce an algorithm for the strict minimization, called Window Minimiza-
tion, which is based on the simultaneous reordering of several vertices. Then
our postprocessing is intensified by Simulated Annealing (SA) [18] which is a
general method to escape local minima. In the multilevel framework SA only
aims at searching for local changes that guarantee the preservation of large-scale
solution features inherited from coarser levels.

The power and robustness of our multilevel algorithm was proven by inten-
sive experimental comparison with the spectral approach. Without the post-
processing the multilevel results are much better than the spectral ones by an
average of 34.4%. After applying the same postprocessing (without simulated
annealing) to both the multilevel and the spectral first approximations, the gap
between the two frameworks was significantly reduced, but still the multilevel
results are better by an average of 4.7%. Different parts of the postprocessing
were enabled step-by-step in order to show the gradual improvement of the re-
sults. However, not only the results of the multilevel algorithm are better, but
while our algorithm performs in linear time, the spectral approach is sensitive
to the obtained accuracy; the trade-off between the complexity and the high ac-
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curacy of the calculation of v2 is discussed in Section 4. Our experiments show
that the Algebraic Multilevel approach can be used as a first approximation for
the M2sP to obtain high quality results in linear time, while the postprocessing
can actually improve these results and can serve as a tool for improving any first
approximation of the M2sP obtained by other methods. The implemented algo-
rithm can be obtained at http://www.wisdom.weizmann.ac.il/∼safro/min2sum.

The problem definition and its generalization are described in Section 2. The
multilevel algorithm along with additional optimization techniques are presented
in Section 3. A comparison of our results with the spectral approach is finally
summarized in Section 4.

2 Problem definition and generalization

Given a weighted graph G = (V, E), where V = {1, 2, ..., n}, denote by wij

the non-negative weight of the edge ij between nodes i and j (if ij /∈ E then
wij = 0). The purpose of the minimum 2-sum problem is to find a permutation
π of the graph nodes such that the cost σ2(G, π) =

∑

ij

(

wij(π(i) − π(j))2
)

is minimal. In the generalized form of the problem that emerges during the
multilevel solver, each vertex i is assigned a volume (or length), denoted vi.
The task now is to minimize the cost σ2(G, x, π) =

∑

ij

(

wij(xi − xj)
2
)

, where
xi = vi

2 +
∑

k,π(k)<π(i) vk, i.e., each vertex is positioned at its center of mass
capturing a segment on the real axis which equals its length. Note that the
difference xi − xj contains the volumes of the vertices between i and j and half
the volumes of i and j. The original form of the problem and the general form
with equal-volume vertices are both minimized by the same permutation.

We are not interested in the worst possible cases, which are often very arti-
ficial. Our focus is on practical high-performance algorithm that will yield (in
most practical cases) a good approximation to the optimum at low computa-
tional cost. Typically, the multilevel algorithms exhibit linear complexity, i.e.,
the computational cost in most practical cases is proportional to |V |+ |E|.

3 The algorithm

In the multilevel framework a hierarchy of decreasing size graphs : G0, G1, ..., Gk

is constructed. Starting from the given graph, G0 = G, create by coarsening the
sequence G1, ..., Gk, then solve the coarsest level directly, and finally uncoarsen
the solution back to G. This entire process is called a V -cycle.

As in the general AMG setting, the choice of the coarse variables (aggre-
gates), the derivation of the coarse problem which approximates the fine one
and the design of the coarse-to-fine disaggregation (uncoarsening) process are
all determined automatically as described below.
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3.1 Coarsening: Weighted Aggregation

The coarsening used here is similar to the process we have used in solving the
minimum linear arrangement problem [26]. However, for the completeness of
this article, we briefly repeat it.

The coarsening is interpreted as a process of weighted aggregation of the
graph nodes to define the nodes of the next coarser graph. In weighted aggre-
gation each node can be divided into fractions, and different fractions belong
to different aggregates. The construction of a coarse graph from a given one is
divided into three stages: first a subset of the fine nodes is chosen to serve as
the seeds of the aggregates (the nodes of the coarse graph), then the rules for
interpolation are determined, thereby establishing the fraction of each non-seed
node belonging to each aggregate, and finally the strength of the connections
(or edges) between the coarse nodes is calculated.

Coarse Nodes. The construction of the set of seeds C and its complement,
denoted by F , is guided by the principle that each F -node should be “strongly
coupled” to C. Also, we will include in C nodes with exceptionally large volume,
or nodes expected (if used as seeds) to aggregate around them exceptionally large
volumes of F -nodes. To achieve these objectives, we start with an empty set C,
hence F = V , and then sequentially transfer nodes from F to C, employing the
following steps. As a measure of how large an aggregate seeded by i ∈ F might
grow, define its future-volume ϑi by

ϑi = vi +
∑

j∈V

vj ·
wji
∑

k∈V

wjk

. (1)

Nodes with future-volume larger than η times the average of the ϑi’s are first
transferred to C as most “representative”. (In our tests η = 2). The insertion
of additional fine nodes to C depends on a threshold Q (in our tests Q = 0.4)
as specified by Algorithm 1. That is, a fine node i is added to C if its relative
connection to C is not strong enough, i.e., smaller than Q. Also, vertices with
larger values of ϑi are given higher priority to be chosen to belong to C.

Algorithm 1: CoarseNodes(Parameters : Q, η)

C ← ∅, F ← V

Calculate ϑi for each i ∈ F , and their average ϑ

C ← nodes i with ϑi > η · ϑ
F ← V \ C
Sort F in descending order of ϑi

Go through all i ∈ F in descending order of ϑi

If

(

∑

j∈C

wij/
∑

j∈V

wij

)

≤ Q then move i from F to C

Return C

For convenience we are currently using a library O(n log(n)) sorting algorithm.
However, since no exact ordering is really needed, this can be replaced by a
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rough bucketing sort which has O(n) complexity. We have actually implemented
a simple bucketing sort and compared its results with the exact sort ones. Since
no significant differences were observed, we may state that the exact sorting
does not play a role in the algorithm. The only important task is to identify the
vertices with exceptionally large future-volume, which can easily be achieved by
O(n) procedure.

The Coarse Problem. Each node in the chosen set C becomes the seed
of an aggregate that will constitute one coarse level node. Define for each i ∈ F
a coarse neighborhood Ni = {j ∈ C, wij ≥ αi}, where αi is determined by
the demand that |Ni| does not exceed the allowed coarse neighborhood size r
chosen to control complexity. (For typical values of r consider the Appendix).
The classical AMG interpolation matrix P (of size |V | × |C|) is defined by

Pij =











wij/
∑

k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

(2)

Pij thus represents the likelihood of i to belong to the j-th aggregate. Let I(k) be
the ordinal number in the coarse graph of the node that represents the aggregate
around a seed whose ordinal number at the fine level is k. Following the weighted
aggregation scheme used in [28], the edge connecting two coarse aggregates,

p = I(i) and q = I(j), is assigned with the weight w
(coarse)
pq =

∑

k 6=l PkiwklPlj .
The volume of the i-th coarse aggregate is

∑

j vjPji. Note that during the
process of coarsening the total volume of all vertices is conserved.

Solving the coarsest level, which consists of no more than 8 nodes (other-
wise a still coarser level would be introduced for efficiency) is performed directly
by simply trying all possible arrangements.

3.2 Disaggregation (uncoarsening)

Having solved a coarse problem, the solution to the next-finer-level problem
is initialized by first placing the seeds according to the coarse order and then
adjusting all other F -nodes while aiming at the minimization of the quadratic
arrangement cost. This approximation is subsequently improved by several re-
laxation (local reordering) sweeps, first compatible, then regular with or without
additional stochastic elements, as explained below and summarized in Algorithm
3.

3.2.1 Initialization

Given is the arrangement of the coarse level aggregates in its generalized form,
where the center of mass of each aggregate j ∈ C is positioned at xI(j) along
the real axis. We begin the initialization of the fine level arrangement by letting
each seed j ∈ C inherit the position of its respective aggregate: yj = xI(j). At
each stage of the initialization procedure, define V ′ ⊂ V to be the subset of
nodes that have already been placed, so we start with V ′ = C. Then proceed
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by positioning each fine node i ∈ V \ V ′ at the coordinate yi in which the cost
of the arrangement, at that moment when i is being placed, is minimized. The
sequence in which the nodes are placed is roughly in decreasing order of their
relative connection to V ′, that is, the nodes which have strong connections to
V ′ compared with their connections to V are placed first. To be precise, the
coordinate yi is located at its minimum (volumes are not taken into account)

yi =

∑

j∈V ′ yjwij
∑

j∈V ′ wij

. (3)

Then V ′ ← V ′ ∪ {i} and the process continues until V ′ = V . Finally each
position yi is changed to

xi =
vi

2
+

∑

yk<yi

vk , (4)

thus retaining order while taking volume (length) into account.

3.2.2 Relaxation

The arrangement obtained after the initialization is a first feasible solution for
M2sP which is then improved by employing several sweeps of relaxation, first
compatible then Gauss-Seidel-like (GS). These two types of relaxation are very
similar to the above initialization: The compatible relaxation, motivated in [3],
improves the positions of (only) the F -nodes according to the minimization cri-
terion (3) (where V ′ = V ) while keeping the positions of the seeds (C-nodes)
unchanged. The GS relaxation is similarly performed, but for all nodes (includ-
ing C). Each such sweep is again followed by (4).

3.2.3 Window Minimization

The cost of the arrangement can be further reduced by strict minimization,
a sequence of rearrangements that accepts only changes which decrease the
arrangement cost. Since done in the multilevel framework, it can be restricted
at each level to just local changes, i.e., reordering small sets of neighboring
nodes, which are adjacent (or relatively close) to each other at the current
arrangement. It is easy to see that switching positions between several adjacent
nodes is indeed a local operation, since the resulting new arrangement cost can
be calculated only at the vicinity of the adjustment and not elsewhere. Such
a node by node minimization was applied in our algorithm for the Minimum
Linear Arrangement problem (see [26]). This method may also be used for
M2sP. However, we would like to propose a more advanced method of local
minimization, called Window Minimization (WM), which is suitable for both the
multilevel and the spectral approach frameworks. The difference between WM
and simple node by node minimization is that WM simultaneously minimizes
the arrangement cost of several nodes. Given a current approximation x̃ to
the arrangement of the graph, denote by δi a correction to x̃i. Let W = {i1 =
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π−1(p+1), ..., iq = π−1(p+q)} be a window of q sequential vertices in the current
arrangement, i.e., the nodes positioned at q subsequent coordinates x̃i1 , ..., x̃iq

.
The local energy minimization problem associated with a given window W can
be formulated as follows :

minimize σ2(W, x̃, π, δ) =
∑

i,j∈W

wij(x̃i+δi−x̃j−δj)
2+

∑

i∈W, j 6∈W

wij(x̃i+δi−x̃j)
2.

(5)
To prevent the possible convergence of many coordinates to one point, and, more
precisely, to express the aim of having {xi+δi}i∈W an approximate permutation
of {xi}i∈W , we have added the following constraints

∑

i∈W

(x̃i + δi)
mvi =

∑

i∈W

x̃i
mvi , m = 1, 2

where for m = 2 we have neglected the quadratic term in δi. Note that the sums
∑

i∈W
x̃i

mvi for m = 1, 2 are invariant under permutations. Using Lagrange
multipliers, the final formulation of the window minimization problem is :

minimize σ2(W, x̃, π, δ, λ1, λ2) = σ2(W, x̃, π, δ) + λ1

∑

i∈W

δivi + λ2

∑

i∈W

δivix̃i ,

(6)
under the second and third constraints of (7) below, yielding the following sys-
tem of equations:



















∑

j∈W

wij(δi − δj) + δi

∑

j 6∈W

wij + λ1vi + λ2vix̃i =
∑

j

wij(x̃j − x̃i) i ∈ {1 . . . q}
∑

i

δivi = 0
∑

i

δivix̃i = 0 .

(7)
Usually in a correct multilevel framework, the changes δi are supposed to be

relatively small since the global approximation for the arrangement is inherited
from the coarser levels. Their smallness is effected by the very restriction of the
minimization to one window at a time. Because of the continuous formulation
(7) of the problem within a window, the solution will almost always tend to
move the vertices away from their initial ordering (adapted from the discrete
arrangement). These changes may introduce some overlap between the vertices,
but at the same time decrease the energy cost (6). It is thus expected that the
δi’s will not vanish even at the global minimum. After solving the system (7),
every vertex i ∈W is thus positioned at yi = x̃i + δi. Feasibility with respect to
the volumes of the nodes is retained by applying (4). Since the size and location
of W are quite arbitrary, the energy cost of the new sub-arrangement is further
improved by GS relaxation sweeps applied to an enlarged W, where, say 5%
of the window’s size at each end (if possible) are added to W. As usual, each
sweep is followed by (4). The final obtained energy cost is then compared with
the one prior to all the window changes, the minimum of the two is accepted,
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updating x̃. We have observed actual decrease in the energy cost in about 5%
of the windows.

A sweep of WM with a given window size q consists of a sequence of over-
lapping windows, starting from the first node in the current arrangement and
stepping by b q

2c for each additional window. One such sweep is employed for
every given q, while a small number of different q’s is used (in our tests there
never was a need for more than 6). Our experiments show that the algorithm
is robust to changes in the chosen q’s; for complete details consider WinSizes
in the Appendix. Note, however, that q should be small enough to still guar-
antee linear execution time of the entire algorithm. The WM is summarized in
Algorithm 2.

Algorithm 2: WindowMinimization(graph G, current order x̃)

Parameters: WinSizes, k2 (for chosen values, consider the Appendix)

For each q ∈WinSizes
For i = 1 To |V | Step i = i + b q

2c
W = {π−1(i), ..., π−1(i + q − 1)}
Solve the system of equations (7)
Apply k2 sweeps of GS relaxation on the enlarged W with x̃ + δ
x̃← x̃ + δ if the cost of the arrangement was decreased

Return x̃

3.2.4 Simulated Annealing

A general method to escape false local minima and advance to lower costs is
to replace the strict minimization by a process that still accepts each candidate
change which lowers the cost, but also assigns a positive probability for accepting
a candidate step which increases the cost of the arrangement. The probability
assigned to a candidate step is equal to exp(−∆/T ), where ∆ > 0 measures
the increase in the arrangement cost and T > 0 is a temperature-like control
parameter which is gradually decreased toward zero. This process, known as
Simulated Annealing (SA) [18], in large problems would usually need to apply
very gradual cooling (decrease of temperatures), making it extremely slow and
inefficient for approaching the global optimum.

In the multilevel framework, however, the role of SA is somewhat different.
At each level it is assumed that the global arrangement of aggregates has been
inherited from the coarser levels, and thus only local, small-scale changes are
needed. For that purpose, we have started at relatively high T , lowered it
substantially at each subsequent sweep, until window minimization is employed.

In particular, 2k + 1 candidate locations are examined for each vertex, each
corresponds to moving it some distance l, 0 < |l| ≤ k. The initial temper-
ature T = T (|l|) > 0 is calculated apriori for each distance l by aiming at
the acceptance of a certain percent of changes (for instance 60%). In detail,
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the probability of moving a vertex l positions (l = ±1, ...,±k) is Pr(l) =
z · min(1, exp(−∆(l)/T (|l|)), where z is a normalization factor calculated by

the demands
∑k

l=−k Pr(l) = 1 and Pr(0) = z ·minl=±1,...,±k(1 − Pr(l)/z). In
each additional sweep T (|l|) is reduced by a factor, such as 0.6. Typically only
three such cooling steps are used.

Repeated heating and cooling is successively employed for better search over
the local landscape. This search is further enhanced by the introduction of a
“memory”-like tool consisting of an additional permutation which stores the
Best-So-Far (BSF) observed arrangement, which is being occasionally updated
by a procedure called Lowest Common Configuration (LCC) [8]. LCC enables
the systematic accumulation of sub-permutations over a sequence of different
arrangements, such that each BSF sub-permutation exhibits the best (minimal)
sub-order encountered so far. The cost of the obtained BSF is at most the lowest
cost of all the arrangements it has observed, and usually it is lower. The use
of LCC becomes more important for larger graphs, where it is expected that
the optimum of a subgraph is only weakly dependent on other subgraphs. Due
to the LCC procedure, it is not necessary to wait in the stochastic annealing
process until all minimal sub-permutations are simultaneously obtained, which
may take exponential time; instead it is sufficient to obtain each such minimal
sub-order just once, since henceforth it is guaranteed to appear in the BSF. In
detail, the BSF (of a certain level) is initialized by the arrangement obtained
at the end of the strict minimization. Then the BSF is improved by the LCC
procedure which updates parts of it taken from the new arrangements reached
right after each heating-cooling cycle. All these accumulated updates are thus
stored at the BSF, which thus represents the current calculated minimum. The
complete description of the LCC algorithm is given in [26].

The entire disaggregation procedure is summarized below in Algorithm 3.
The Algorithm is divided into two parts: the first approximation and the post-
processing corresponding to the results supported later.

Algorithm 3: Disaggregation(coarse level C, fine level F)

Parameters: k1, ..., k5, γ (for chosen values consider the Appendix.)

FIRST APPROXIMATION :
Initialize F from C
Apply k1 sweeps of compatible relaxation on F

POSTPROCESSING :
Apply k2 sweeps of GS relaxation on F
Apply Window Minimization on F
Initialize BSF ← current arrangement of F
Do k3 cycles of heating and cooling

Calculate T (|l|) for l = 1, ..., k4

Do k5 steps
Apply SA within distance k4 on F
Decrease all T (|l|) by a factor γ
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Apply Window Minimization on F
BSF = LCC(BSF, current arrangement of F)

Return BSF

4 Results and Related Works

We have implemented and tested the algorithm using standard C++, LA-
PACK++ [24] and LEDA libraries [20] on Linux 2.4GHz machine. The im-
plementation is non-parallel and has not been optimized. The results (order
costs and running times) should only be considered qualitatively and can cer-
tainly be further improved by more advanced implementation.

We have found only one article [14] with an implemented algorithm and nu-
merical results for M2sP. The algorithm is based on the spectral approach. Since
this test suite is relatively small to provide enough information regarding M2sP,
we have launched a new, much larger test suite which consists of 66 graphs
from different areas [12, 21], see Table 1. These graphs are divided into two
groups according to their size : the results for the smaller ones are introduced
in Tables 2 and 3, while those for the larger ones in Table 4. For all the graphs
in Tables 2 and 3 we compare our results with those of the spectral approach.
The numbers in columns 4-5 (marked by “ML” and “ML+GS”) and 7-11 are
in percentage above the cost energy presented at the column “Quick” (e.g., the
0.8 appearing for the first graph gd96c in column “ML” means that the initial
cost energy is 3455 · 1.008). The first approximation obtained by the multilevel
V-cycle, i.e., the arrangement obtained right after applying the compatible re-
laxation at the finest level is introduced in the column “ML” of Tables 2 and
3. We run the algorithm 100 times (using the parameters specified in the Ap-
pendix for the “Quick” V-cycle), each starts from a different permutation of
the nodes. The best obtained results are presented here. The means of the 100
runs are worse than the corresponding “Quick”-values by an average of 0.51%,
while the standard deviation (around the means) is 0.69% on the average. The
“ML” results should be compared to the spectral approach results at column
“SP” obtained by calculating the second eigenvector of the Laplacian1 of the
graph using MATLAB routine. It shows that the “ML” algorithm provides
much better results, shorter by an average of +34.4% (excluding the statistics
of bintree10, in which the improvement is much larger). Only in one case, the
10-dimensional hypercube, the spectral approach provided a lower cost of -2.8%.
However, not only the obtained results are much worse. Even if the spectral
method leads to the correct order, the calculations must be performed with very

1The algebraic representation of a graph is given by its Laplacian A (a |V | × |V | matrix),
whose terms are defined by

Aij =

8

<

:

−wij for ij ∈ E, i 6= j

0 for ij 6∈ E, i 6= j
P

k 6=i wik for i = j .
(8)
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high accuracy. In fact, the precision of the second eigenvector coordinates must
be at least O(log |V |) and usually much better. This is not a trivial task while
one uses some approximation algorithm. Our results for the spectral approach
were thus obtained with 16-digits precision of an exact algorithm. The experi-
ments with lower precision or with approximation algorithms gave much poorer
results. For example, for the three graphs bcspwr10, airfoil1 and bcsstk38 the
spectral costs with 5-digits precision were 4.40E+07, 4.49E+07 and 1.20E+10
respectively, while increasing the precision to 7-digits gave 1.64E+07, 1.93E+07
and 4.40E+09. The complexity of an exact calculation of the second smallest
eigenvector is O(|V |3) while the multilevel algorithm is linear in the number of
edges.

We have next tested the outcome of our postprocessing on both initial sets
of results. Most significant improvement was introduced by applying the Gauss-
Seidel-like relaxation, as can be seen in Tables 2 and 3 column “ML+GS” for
the multilevel algorithm and “+GS” for the spectral approach. The gap be-
tween the two has been reduced, but the spectral approach still provides worse
results on the average by 7.1%. Next we have applied the window minimization
which concludes our, so called “Quick” V-cycle. Comparing columns “Quick”
with the corresponding “+WM” shows that the multilevel results remain bet-
ter, the spectral ones are worse by an average of 4.7%.

Finally, we introduced randomness by applying Simulated Annealing. In the
multilevel framework, the SA enters at all levels of the V-cycle. We refer to this
version as the “Extended” V-cycle (its complete parameters are given in the
Appendix). While the “Quick” V-cycle is aimed at achieving fast performance,
the “Extended” V-cycle runs longer but succeeds in finding lower cost arrange-
ments on the average by 1%. The means of the 100 runs of the “Extended”
V-cycles are worse than the corresponding “Quick”-values by an average of
0.49% and the average of the calculated standard deviations (around the means
for 100 runs) of the “Extended” V-cycle is 0.66%. We may conclude that the
“Extended” V-cycle is not really needed. Almost identical results are already
obtained by the “Quick” V-cycle, where the improvement is neither significant
nor consistent, i.e., it is just within the typical standard deviation. In column
“+SA” of Tables 2 and 3 we present the results obtained after adding SA to the
spectral approach followed by the above postprocessing. The improvement is
again of only 1%. Our last test was to run a very long SA after the postprocess-
ing with the spectral approach, aiming at achieving comparable amount of work
to 100 “Extended” V-cycles. These results are given in column “HSA”. While
improvement is naturally observed, the results on the average remain worse by
about 2%, while for 6 graphs out of 37 it is worse by more than 5%.

In addition, we present the spectral lower bounds [14] for the smaller graphs
(see Tables 2 and 3, column “LB”) and calculate the gap (see Tables 2 and 3,
column “∆Quick”) between our results and the spectral lower bound. In spite of
the fact that it is impossible to judge which costs are closer to the real minima,
we may state that no significant indications of the existence of these lower costs
were observed: in 16 out of 37 graphs our results were within 25% of the lower
bounds, but on the average they were 75.4% longer.
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To enrich our test suite, we present in Table 4 our “Quick” V-cycle results for
additional 29 relatively large graphs. No spectral approach results are provided
since we were not able to run (on the computers available to us) the MATLAB
routine and calculate the needed eigenvector. Each result is again the best
observed out of 100 runs, for which the means for 100 runs are worse than the
corresponding “Quick”-values by an average of 0.55% and the average standard
deviation is 0.47%.

The running time of the algorithm is presented in Table 6. In column
“TQuick” we present the running time of one V-cycle which corresponds to
the “Quick” column in Tables 2, 3 and 4. The running time of the suggested
postprocessing added after the spectral ordering was measured for the graphs
from Tables 2, 3 and we show it in column “TPost”. The running time of the
postprocessing corresponds to the values introduced in the “+SA” column of
Tables 2 and 3. The dash notation (“-”) corresponds to the graphs from Table
4 that were too large for usual MATLAB spectral calculation routines. In both
cases the running time is measured in minutes. The star notation (“*”) can be
interpreted as “less than one second”.

5 Conclusions

We have presented a multilevel algorithm for the minimum 2-sum problem for
general graphs. The algorithm is based on the general principle that during
coarsening each vertex may be associated to more than just one aggregate ac-
cording to some “likelihood” measure. The uncoarsening initialization, which
produces the first arrangement of the fine graph nodes, strongly relies on energy
considerations (unlike usual interpolation in classical AMG). This initial order
is further improved by Gauss-Seidel-like relaxation, window minimization and
possibly by employing randomness, i.e., simulated annealing. The running time
of the algorithm is linear, thus it can be applied to very large graphs.

We have compared our results to those obtained by the spectral approach.
The calculation of the second eigenvector of the Laplacian of the graph has to
be of high accuracy to provide reasonable results. Such a direct computation
is of complexity O(|V |3). Still, the obtained results are much worse than the
initial results obtained by our multilevel V-cycle by 34.4% on the average for the
smaller sized test suite. In addition, we have applied postprocessing to both ini-
tial arrangements. The Gauss-Seidel-like relaxation improves both results most
significantly. The window minimization further reduces the arrangement cost
for some graphs. The final results show that the multilevel framework achieves
better results of 4.7% on the average. Finally, we have added stochastisity to
both algorithms. Both results were improved by about 1%. We have also tried
to apply a very long SA to the final results of the postprocessing of the spectral
approach. Many results have been further improved, however, some graphs (6
out of 37) still present results higher by more than 5%.

Our main conclusion is that the average and the best results of our V-
cycles are better than the results of the spectral approach. We recommend
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our multilevel algorithm as a general practical method for solving the min-
imum 2-sum problem and as a fast and high-quality method for obtaining
first approximation for it. The implemented algorithm can be obtained at
http://www.wisdom.weizmann.ac.il/∼safro/min2sum.

Appendix: Parameters

In order to control the running time of the algorithm it is important to decrease
the total number of edges of the constructed coarse graphs. This is achieved by
the following two parameters: the maximum allowed coarse neighborhood size
r, which restricts the allowed size |Ni| of the coarse neighborhood of a vertex
i ∈ F by deleting the weakest wij , j ∈ C; and the edge filtering ε threshold,
which deletes every relatively weak edge ij (from the created coarse graph) if
both wij < ε · si and wij < ε · sj , where si =

∑

k wik .
These two parameters and five others which control the uncoarsening pro-

cedure (see Algorithm 3) are presented in Table 5 for the “Quick” and “Ex-
tended” V-cycles we have used. The last two parameters within the SA (of
Algorithm 3) were constantly chosen to be k5 = 4 and γ = 0.6.

It is however important to mention that these parameters are the ones used
only for the finest levels. As the coarse graphs become much smaller they
are accordingly increased. This hardly affects the entire running time of the
algorithm but systematically improves the obtained results. In the last column
of Table 5 we specifically describe the increase introduced for each parameter as
a function of level L, which usually depends on the ratio R = max(1, |E0|/|EL|)
measuring the relative decrease of the number of edges at level L compared with
the original graph.

We tested many options for the window sizes in Algorithm 2. Usually these
sizes were relatively small and very robust to changes. In our implementation we
used WinSizes = {5, 10, 15, 20, 25, 30}, however similar results were obtained
with other sets of windows, for example, WinSizes = {5, 9, 17, 23, 29}.
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Table 1: Benchmark for the minimum 2-sum problem.

Graph |V| |E| Graph |V| |E|
gd96c 65 125 nasa1824 1824 18692
gd95c 62 144 randomA2 1000 24738
gd96b 111 193 nasa2146 2146 35052
gd96d 180 228 bcsstk13 2003 40940
dwt245 245 608 whitaker3 9800 28989
bintree10 1023 1022 zcrack 10240 30380
bus685 685 1282 shuttleeddy 10429 46585
bus1138 1138 1458 randomA3 1000 49820
gd96a 1096 1676 nasa4704 4704 50026
can445 445 1682 bcsstk24 3562 78174
c1y 828 1749 bcsstk38 8032 173714
c2y 980 2102 finan512 74752 261120
bcspwr08 1624 2213 bcsstk33 8738 291583
bcspwr09 1723 2394 bcsstk29 13830 302424
c5y 1202 2557 ocean 143437 409593
jagmesh1 936 2664 tooth 78136 452591
c3y 1327 2844 mrng1 257000 505048
c4y 1366 2915 bcsstk37 25503 557737
dwt918 918 3233 msc23052 23052 559817
dwt1007 1007 3784 bcsstk36 23052 560044
jagmesh9 1349 3876 bcsstk31 35586 572913
can838 838 4586 msc10848 10848 609464
randomA1 1000 4974 ferotor 99617 662431
hc10 1024 5120 bcsstk35 30237 709963
can1054 1054 5571 598a 110971 741934
can1072 1072 5686 bcsstk32 44609 985046
randomG4 1000 8173 bcsstk30 28924 1007284
randomA4 1000 8177 144 144649 1074393
bcspwr10 5300 8271 ct20stif 52329 1273983
bcsstm13 649 9949 m14b 214765 1679018
dwt2680 2680 11173 mrng2 1017253 2015714
airfoil1 4253 12289 auto 448695 3314611
bcsstk12 1423 16342 pwtk 217918 5653257
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Table 2: Results (small graphs).

Graph LB ∆Quick ML ML+GS Quick SP +GS +WM +SA HSA
gd96c 1.25E+03 176.9 0.8 0.3 3.45500E+03 46.0 5.8 0.0 0.0 0.0
gd95c 1.13E+03 232.9 0.8 0.0 3.75500E+03 26.2 0.3 0.0 0.0 0.0
gd96b 2.43E+03 684.8 8.7 0.0 1.90860E+04 53.7 1.3 1.1 1.0 1.0
gd96d 3.74E+04 46.3 8.2 1.0 5.47390E+04 87.0 1.0 0.2 0.1 0.0
dwt245 4.34E+04 45.8 2.9 0.4 6.32810E+04 80.4 2.6 0.8 0.8 0.0
bintree10 8.85E+04 53.2 11.2 0.0 1.35656E+05 16394.2 38.8 11.3 10.3 6.4
bus685 1.43E+05 50.8 9.6 0.2 2.15744E+05 44.9 9.8 7.0 7.0 6.6
bus1138 4.00E+05 38.0 6.7 0.4 5.52111E+05 76.5 7.4 1.8 0.9 0.4
gd96a 2.83E+06 430.0 13.6 0.1 1.49741E+07 124.4 31.3 25.2 21.9 15.9
can445 1.57E+06 5.0 1.2 0.0 1.65431E+06 6.0 0.8 0.6 0.6 0.6
c1y 5.56E+06 41.4 8.2 0.0 7.86685E+06 121.1 5.6 4.6 4.3 4.2
c2y 8.74E+06 22.7 7.3 0.0 1.07286E+07 61.2 0.9 0.6 0.3 0.3
bcspwr08 7.97E+05 17.8 5.6 0.4 9.39437E+05 48.6 13.0 11.2 9.1 1.9
bcspwr09 7.91E+05 28.7 5.8 0.5 1.01801E+06 71.8 25.5 22.5 22.0 11.3
c5y 1.16E+07 21.2 7.2 0.0 1.39958E+07 130.5 10.8 9.6 8.4 6.4
jagmesh1 8.27E+05 5.1 2.5 0.1 8.68459E+05 14.2 12.6 12.2 11.8 1.1
c3y 1.55E+07 27.0 7.0 0.0 1.97321E+07 142.7 7.5 2.5 0.8 0.7
c4y 1.44E+07 15.0 8.2 0.0 1.66028E+07 51.8 2.1 1.4 0.2 0.0
dwt918 5.46E+05 51.0 5.1 0.1 8.25233E+05 11.5 1.4 0.9 0.3 0.0
dwt1007 8.86E+05 15.9 1.4 0.0 1.02750E+06 4.3 2.2 1.9 1.7 0.0
(continued)
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Table 3: Results (small graphs) - continuation. The average results are calculated for all the 37 graphs of Tables 2 and 3.

Graph LB ∆Quick ML ML+GS Quick SP +GS +WM +SA HSA
jagmesh9 1.10E+06 27.4 5.2 0.2 1.39541E+06 10.3 6.3 4.5 1.6 0.9
can838 7.02E+06 5.8 0.4 0.0 7.43012E+06 1.8 0.1 0.1 0.0 0.0
randomA1 7.03E+07 321.8 34.9 1.8 2.96618E+08 49.7 18.2 9.7 4.9 1.1
hc10 1.79E+08 0.0 3.6 0.0 1.78957E+08 0.8 0.1 0.1 0.0 0.0
can1054 5.79E+06 9.9 0.2 0.1 6.36257E+06 2.0 0.1 0.1 0.0 0.0
can1072 8.17E+06 6.5 3.6 0.0 8.70400E+06 3.6 0.1 0.0 0.0 0.0
randomG4 7.33E+06 5.0 6.9 0.0 7.70221E+06 7.8 1.1 0.8 0.6 0.1
randomA4 3.01E+08 125.6 18.3 4.3 6.78008E+08 31.2 15.3 5.7 0.9 0.4
bcspwr10 1.19E+07 15.0 10.5 0.2 1.37238E+07 19.0 4.9 4.1 3.0 2.3
bcsstm13 2.23E+07 77.2 0.5 0.0 3.94573E+07 31.7 0.8 0.6 0.3 0.0
dwt2680 7.31E+06 25.6 4.2 0.0 9.18901E+06 5.2 0.3 0.1 0.0 0.0
airfoil1 1.18E+07 37.9 8.9 0.1 1.63343E+07 18.4 7.2 5.9 2.7 1.1
bcsstk12 1.71E+07 20.6 7.7 0.1 2.06281E+07 19.2 11.9 10.2 6.8 5.9
nasa1824 1.37E+08 3.1 5.8 0.0 1.41216E+08 24.0 7.9 4.2 1.1 0.3
randomA2 2.21E+09 33.5 12.8 4.1 2.95112E+09 12.9 5.1 0.3 0.1 0.0
nasa2146 1.11E+08 11.3 5.3 0.1 1.23584E+08 6.6 4.3 4.2 4.0 2.1
bcsstk13 4.35E+08 54.4 3.4 0.0 6.71461E+08 40.2 14.8 9.3 3.0 2.7
AVERAGE 75.4 6.9 0.4 41.3 7.5 4.7 3.5 2.0
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Table 4: Results (large graphs).

Graph Quick Graph Quick
whitaker3 6.53774E+07 msc23052 6.58277E+10
zcrack 1.36390E+08 bcsstk36 6.58053E+10
shuttleeddy 1.36200E+08 bcsstk31 7.45410E+10
randomA3 6.63612E+09 msc10848 5.95150E+10
nasa4704 7.54695E+08 ferotor 2.67776E+11
bcsstk24 9.06089E+08 bcsstk35 7.51880E+10
bcsstk38 3.87606E+09 598a 3.85388E+11
finan512 1.00967E+10 bcsstk32 1.46284E+11
bcsstk33 2.97010E+10 bcsstk30 5.11256E+10
bcsstk29 1.06444E+10 144 1.55347E+12
ocean 1.16999E+11 ct20stif 6.77425E+11
tooth 3.38761E+11 m14b 1.67209E+12
mrng1 6.69398E+11 mrng2 1.93775E+13
bcsstk37 6.77934E+10 auto 1.33598E+13

pwtk 2.25527E+12

Table 5: The parameters used for the “Quick” and “Extended” V-cycles.

Parameter “Quick” “Extended” The increase
V-cycle V-cycle for level L

The coarse neighborhood size (r) 10 10 +log(R)

The edge filtering threshold (ε) 0.001 0.001 ·0.9log(R)

Compatible relaxation sweeps (k1) 5 10 +2 · L
GS relaxation sweeps (k2) 5 10 +2 · L
Heating and cooling in SA (k3) 0 3 ·log(R)

k4 used in the SA 0 5 +log(
√

R)
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Table 6: Running time

Graph TQuick TPost Graph TQuick TPost

gd96c * * nasa1824 0.05 0.17
gd95c * * randomA2 0.26 0.27
gd96b * * nasa2146 0.1 0.38
gd96d * * bcsstk13 0.1 0.44
dwt245 * 0.01 whitaker3 0.15 -
bintree10 * 0.02 zcrack 0.13 -
bus685 * 0.02 shuttleeddy 0.15 -
bus1138 0.05 0.04 randomA3 0.42 -
gd96a 0.04 0.05 nasa4704 0.11 -
can445 * 0.02 bcsstk24 0.14 -
c1y * 0.02 bcsstk38 0.3 -
c2y 0.02 0.03 finan512 1.2 -
bcspwr08 0.04 0.05 bcsstk33 0.65 -
bcspwr09 0.05 0.06 bcsstk29 0.6 -
c5y 0.02 0.06 ocean 7.5 -
jagmesh1 0.04 0.04 tooth 2.5 -
c3y 0.02 0.05 mrng1 12.3 -
c4y 0.02 0.05 bcsstk37 1.3 -
dwt918 * 0.04 msc23052 1.25 -
dwt1007 * 0.04 bcsstk36 1.3 -
jagmesh9 0.05 0.07 bcsstk31 1.9 -
can838 * 0.04 msc10848 1.1 -
randomA1 0.1 0.11 ferotor 4.7 -
hc10 0.065 0.06 bcsstk35 1.6 -
can1054 * 0.07 598a 6.4 -
can1072 * 0.05 bcsstk32 2.9 -
randomG4 0.02 0.07 bcsstk30 2 -
randomA4 0.15 0.18 144 10.3 -
bcspwr10 0.09 0.17 ct20stif 4.7 -
bcsstm13 0.04 0.14 m14b 17.5 -
dwt2680 0.05 0.12 mrng2 143 -
airfoil1 0.06 0.19 auto 64.3 -
bcsstk12 0.05 0.17 pwtk 20 -



I. Safro et al., The minimum 2-sum problem, JGAA, 1(1) 1–1 (1111) 20

References

[1] S. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope
reduction of sparse matrices. Numerical Linear Algebra with Applications,
2(4):317–334, 1995.

[2] A. Brandt. Algebraic multigrid theory: The symmetric case. 19:23–56,
1986. Preliminary proceedings of the International Multigrid Conference,
April 6–8, 1983, Copper Mountain, CO.

[3] A. Brandt. General highly accurate algebraic coarsening. Electronic Trans.
Num. Anal. 10 (2000) 1-20, 2000.

[4] A. Brandt. Multiscale scientific computation: Review 2001. 2001.

[5] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for
automatic multigrid solution with application to geodetic computations.
Technical report, Institute for Computational Studies, Fort Collins, CO,
POB 1852, 1982.

[6] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for
sparse matrix equations. In D. J. Evans, editor, Sparsity and its Applica-
tions, pages 257–284, 1984.

[7] A. Brandt and D. Ron. Chapter 1 : Multigrid solvers and multilevel op-
timization strategies. In J. Cong and J. R. Shinnerl, editors, Multilevel
Optimization and VLSICAD. Kluwer, 2002.

[8] A. Brandt, D. Ron, and D. Amit. Multi-level approaches to discrete-state
and stochastic problems. In W. Hackbush and U. Trottenberg, editors,
Multigrid Methods II, pages 66–99. Springer-Verlag, 1986.

[9] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial:
second edition. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[10] C.-K. Cheng. Linear placement algorithm and applications to vlsi design.
Netw., 17(4):439–464, 1987.

[11] S. W.-S. D. Ron and A. Brandt. An algebraic multigrid based algorithm
for bisectioning general graphs, 2005.

[12] T. Davis. University of florida sparse matrix collection. NA Digest, 97(23),
1997.

[13] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-
complete problems. In STOC ’74: Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 47–63, New York, NY, USA,
1974. ACM Press.



I. Safro et al., The minimum 2-sum problem, JGAA, 1(1) 1–1 (1111) 21

[14] A. George and A. Pothen. An analysis of spectral envelope reduction via
quadratic assignment problems. SIAM Journal on Matrix Analysis and
Applications, 18(3):706–732, 1997.

[15] K. Hall. An r−dimensional Quadratic Placement Algorithm. Management
Science, 17:217–229, 1970.

[16] B. Hendrickson and R. Leland. An improved spectral graph partitioning
algorithm for mapping parallel computations. SIAM Journal on Scientific
Computing, 16(2):452–469, 1995.

[17] G. Karypis and V. Kumar. hmetis 1.5: A hypergraph partitioning package.
Tech. Report, Dept. of Computer Science, Univ. of Minnesota, 1998.

[18] S. Kirkpatrick. Models of disordered systems. Lecture Notes in Physics
149.

[19] Y. Koren and D. Harel. Multi-scale algorithm for the linear arrangement
problem. Proceedings of 28th Inter. Workshop on Graph-Theoretic Con-
cepts, 2002.
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